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A METHOD TO COMPUTE THE FORCE
SIGNATURE OF A BODY IMPACTING ON A LINEAR
ELASTIC STRUCTURE USING FOURIER ANALYSIS

INTRODUCTION

v NRL has historically been involved in defining shock design inputs for equipment aboard subma-

rines. A body, such as a torpedo, impacting on a structure, such as a submarine huil, is one subset of
this general class. This report presents a general method of determining the force signature of a body
impacting on any linear elastic structure.

Consider equipment which has been attached to a structure, for example a submarine hufl, that is
struck by a body such as an inert torpedo at one of the frames. The goal is to determine the force
exerted by the body impacting on the structure by using the measured response at various gages on the
equipment. In addition the impulse response at various gage locations is needed. The response to
impulse may be obtained by using a standard computer structural anatysis code such as NASTRAN.

ANALYSIS

Consider responses recorded by gages at several points on the equipment. For a linear elastic
structure the response at point P due to a force at point K is the convolution of the force at point X

' and the response at point P due to a unit impulse at point XK. This is expressed as:
Rp()) = [ Fx(T) Ipx (e = T) T | )

Rp - FK . lpx (2)
The convolution of two transforms m time domain is the inverse transform of the product in frequency
domain. Thus

Rp(w) = Fylw) Ipyx(w) )

where Rp(w), Fxlw), Ipx(w) are the Fourier transforms of Rp(t), Fx(t), and Ipx(1). Rplw) for
example is defined by:

Re@) = [ Rpye ™ at | @
and its inverse transform by: '

Re(0) = 5= [ Rp(w)e d. | 0]

In order to make use of a very accurate numerical method tocommFouﬂermeMmdm
transforms derived in a previous report (1], it is necessary to express the transforms in Eq. (3) in terms
of sine and cosine transforms and find the associated inverse transforms. Consider a géneral fuiction
J(p) which is real and satisfies the Dirichlet conditions and the following inte.ni exists

17 rep)ie @
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Writing the Fourier transform of f(p) as:

400 +o0 ) +o0 :
F@ = [ s dp= [ 1) coswpdp—if _ f(p) sinwpdp m
and defining
Flw) = Fe(w) — i Fs(a). 8)
Writing the inverse Fourier mnﬁorm:'of“i‘(m) as:
S(t) = -—- f Flw)e'®de = .,L f - ll’g) (cos wt + 1 sin wt) dw 9
then rewriting : '

+e
S(1) = 'f:'r_f-- Fcoosatdu+-2-!;f: Fssinotde

. S $as
-'5::];“ FSCOSUtdm'FE:-r—f_'. Fe sin ot dw. (10

Since Fs(w) = ~ Fs(~w), Fs is an odd function, and since cos w¢ is an even function the first integrand
on the second line of Eq. (10) is odd; because the integral is cver the symmetric limits —co to 400 it
vanishes. The second integrand on the second line is also odd and therefore both imaginary intégrals
vanish. The integrands on the top line of Eq. (10) are even and consequently:

S(t) = -’l;- f: Fc cos wt do + -;lr- };- Fy sin wt do. an
Since for a physical system f(p) = 0 for p < 0 Fc(w) and Fs(w) become .
Fe@) = " o) coswp dp . | 12
e = [ o) snwpdp ' | am

where Fc vnd Fs are now the familiar Fourier cosine and sine transforms. If f(p) is an even function,
from Egs. (7 )and 9):

+ou
S(t) = -51—'- f‘_ f__ S(p) cos wp cos wt dp dw (14)
which may be written as: _
S = -3- j;. Fe(w) cos wt dw (s
and is the inverse Fourier cosine transform. This transform and the Fourier cosine transform: ‘
Felw) = j;. Je(p) cos mp dp {16)
make up a convenient transform pair. If f(p) is an odd function from Eqgs. (7) and (9)
FAO R -l—f“f”f(p) sin wp sin w? dp de - AaD
e Jom Jem -
which may be written as: ‘ ‘
XOrE 2 [7 Ftw) sin i du as)
and is the lnvme Fourier siné transform. This transform and the Fonﬁef dm w :
Fslw) = f f5(p) sinmwpdp O ﬁ!r) :
make up a transform pair. Returning to Eq. (3) and writing in terms otsine and cosine umm
(Rc = 1 Rg)p = (Fc = { Fodx Ulc = shpx. 20)




b33 ‘?&‘

Dropping the subscripts for convenience when Mlug wlth oniy m m nim in thi deriva-

tion, yields, when setting real and imaginary parts equal: . e
RC-FCIC-FSIS v e e ,"- @n
and o , ‘ o o
. RemFols+Flei e B -

where Rc is the Fourier cosine transform of the response,
Rs is the Fourier sine transform of the response, P
Ic is the Fourier cosine transform of the computer developed response to m:pulse

Is is the Fourier sine transform of the computer developed resoise to impuise..

Note this is impulsive response at P due to unit impuise at X when R is response -at P and the impact
force is at K.

Solving for the Fourier transforms F. and Fg yields
Rclc + Rgly
2+ 1§

Fe= = Fc(w), Fourier cosine transform ‘ 23

Ic= R |
Fgm -Rilfﬁi = Fg(w); Fourier sine transform, (24)

functions of w.

For a forcing function f(¢) undefined for ¢+ < 0 one need not consider f£(¢) before ¢+ = 0 and may
choose f(1) to be even, odd, or neither. The impact force may then be obtained from Egs. (11), (15)
or (18). Typically one would compute both Fs(w) and Fc(m) and depending on which transform con-
verged toward zero faster choose either the inverse cosine transform (Eg. (15)) or inverse sine
«ansform (Eq. (18)) to get the time history of the impact force.

The process is then repeated for the zth point, etc., and a set of estimates can beé built up. The
spread present in them is then a measure of how well the computer model of the stmctufe-eqni?ment :
fits the real world.

COMPUTATION OF FOURIER SINE AND COSINE TRANSFORMS AND IN
TRANSFORMS

In Ref. {1] it is shown that the Fourier cosine and sine transforms computed over a finite ﬁme Ta .

of a function f(¢) expressed as: ‘ L . :

Few) = [ s et - e

Y F@) = [, £0) sin et at S e
may be computed from:

b rc(-)--x(r.):ca-aru-,»ww': A0 gwary R gy

Fyla) = ~

X(Ta):f(ro) cosuly~ X(T)snelo . . . . m




where X isthedisphcementmponuofalinmoscilmor T S
X is the velocity response of a tinear oecillater ~ ~ ~ = T
o is the circular frequency (rads/s) SRATaY SER

To is the end of the time interval

The problem of finding the transforms resolves itself inte finding X(T,) and X(T,) for a ;iven
value of w. Ty and f(Ty) are known. The process is repeated for a number of eventy. spdced values of
. over the desired range. The method to find X(T,) and X(7p) is the numerical integration scheme
presented in [1] but with some tngonomemc aumumom t0 prevent computer pmei'mm pmblm

The integration scheme is as follows:

2
Xes1 = X, cos & ly+!3.;'l‘,‘_"_’£ 28, sin? (wh/2)

wlh »
costwh/2) _ sinwh| < | a9
-1 wlh o’h?

Xppy = —oX,sinwh + X, cos wh — §, -%:—5-

2sin? (wh/2) sinwh
~ S8, [ po 7 b s ] (30)
where A is the time increment, and S, = /o4 — /, and S5, = f,41 — 2/ + fo-1-
The inverse Fourier cosine and sine transforms, defined by:
w .
fe =2 [T Flw) coswrde )
w,
0= [ Fyw) sinwr do | . 62

may be compute. in an exactly analsgous way by letting » become 4 T, become W, and & beeomina
the incréement m w in Egs. (29) and (30) and multiplying the final resuit by 2/».

The numerical integration method has two types of error present: inherent and round oﬂ For

transforms invelving functions which have a finite number of fnite discontinuities and can be exactly

described by a set of straight lines or parabolic arcs the method has no inherent error. The numierical
integration equations for the case above will give exactly the transform value except for ~ound off error

at any w regardless of the increment size A(Ar). For other functions the closer the nppiaxim&hn: :

curve lies to the true function the more exact the transform.

An alternative method to compute Fourier transforms is the fast Fourier transform or FFT. Some
dravbdeksarethatwiththemtmrmummwubn:emuhwmm'mmqumym
ment Aw and the number of frequencies or samples must be a power of 2. With this one sim-
ply chooses a Aw and the number of frequencies desired; or one may compute the ' at any
desired frequency. With the FFT the frequencies are restricted to muitiples of Aw aud ope cannot

obuintmufofmmmatfmmuinummﬁaemmwmmuﬁw{espm;w

interpolation.

TWO DEGREE OF YREEDON SYSTEM TO TEST mummmmm +ie

hadnwm&omeﬁodmmonmmmfmmu,azm&m
shown in Fig. | consisting of 2 coupled mass-spring-damper systotis 15 empioyed. The nd tiiess i

driven by a force of known shape and the response of both masees are calculated to this force. ln:dﬂ- L
tion the response of the masees to a unit impulse is also caloulated. mmmmam




memofmmwﬂu 590

E uxfz + CZ’Z + kz(yz [) - F(‘) ‘ ) . 33)
E | My, + Coh+ Ky, —y) + k=0 ) vt h gt S oot} i tﬁ)}

For the following test cases the following parameters are used:* .

M =1 ib-s¥in K= 27000 Ibs/in €, = 100 Ib-s/in: -
M, = 2 Ib-s/in K, = 9000 Ibs/in  * C, = 200 Ib-s/in

Cm I: Parabelic Force o
A parabolic input force of form:

F(t) = 16000 (¢t~ 40 ) _  0< < .025s ,
F(t) =0 t> .025s } Lt e TN nag

as shown in Fig. 2a is applied. The exact analytical solution is obtained for y; and y; by the method of
Laplace transforms. The solution is straight forward but lengthy and will not be shown here. :

The solution for y, and y, where the force is a unit impulse is also obuined by Llphee
transforms. Using a computer program, the sine ard cosine transforms of the response of ., 0.
: impulse and response to the parabolic force are computad from Egs. (27-30) whers.the'end of the time:
r interval Ty is .3 s, A the time increment is .0025 s and the frequency « ranges from 0 to 2000 rade/s in-
. increments of S rads/s. These tratsforms are then combined according to Eqa. (23) and (24):.00 oBtaia-
dresinemdcodnemmtomuofthefomemminﬁa 2b and 2c. The inverse. transfarms ase-
| obtained using the same equations as for the forward transforms Eqs. (27-30) where the end of the fre-
quency interval Wy is 2000 rads/s, Aw is S rad/s and the time ranges from 0 to .1 s in increlwatd/ol -
.0025 s. The inverse transforms are combined according to Eq. (ll)tooownthefomtimehlstoq

i - biaines ifthemofyghmm‘m-
stract theé force. Itshombenoudmnmo:dermmmmmmmmmbmmf
have thié responses out o a latter time ¢ + 7. For example, in the case sbove the impulse fesponhe-and
response 10 force ware uséd out to 3stommttucnhefomtimehmoryoutto ds.
Case 11: Dewn Ramp Force ' :

A down ramp inptit forcé of form: o
F(e) = 100. ~ (100/.025)¢

PO S
HEE L stE R

i
i

0< 1€ .025s




Y

reflection of the down-ramp function around the y axis is considered, the funiction becomes even and so
onlythecoancmnsform is required in the inverse transform. When the inverse transform is taken by
using Eq. (15), the cosine transform, because it converges faster than the sine transform reconstructs
the function for + 3 0 more accurately than both transforms together as in Eq. 11. Since the forcing
function doesn’t exist before ¢ = 0 the. inverse transform should not be considered before ¢ = 0; in the
above case the ramp before ¢t = 0. For an unknown force both the sine and cosine transforms may be
examined and the one which converges faster may be used for the inverse transform for ¢ 3 0.

Case I11: Damped Sine Force -—
A damped sine wave input force of form:

F()=(1.- /D sindwt/T 0< 1€ .025s, T=.025s
F(t) =0 t> .025s

as shown in Fig. 4a is applied. As in Case II the response to the force is calculated using a Runge-
Kutta method. The same procedure as with Case Il is used to calculate the sine and cosine transform

of the force, shown in Figs. 4b and 4c. The force reconstructed by using both transforms is shown in
Fig. 4d.

Case 1V: Exponential Decaying Force

A decaying exponential input force of form:

F(t) = 100 =50 0< 1< oo

as shown in Fig. 5a is applied. As in Case I the response to the force is calcuiated using a Runge-
Kutta method. The same procedure as in Case III is used to calculate the sine and cosine transform of
the force shown in Figs. 5b and 5¢. The force reconstructed by using both transforms is shown in Fig.
5d. The force reconstructed by the cosine transform above shown in Fig. Se is closer to the input force
because the cosine transform converges faster than the sine transform.

SUMMARY

An accurate method has been presented to compute the force signature of a body impacting on a
linesr elastic structure. The various input forces applied to a two degree of freedom system were all
reconstructed with good accuracy, and assuming that that accurate impulse responses could be obtained:
the method would work equally as well on a complex muliti-degree of freedom structure.

Reference

1. O’'Hara, G.J., "A Numerical Procedure for Shock and Fourier Analysis,” NRL Report 5772, June

1962.
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